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Usually speak of three solutions of the strong CP problem

1 mu = 0
2 Spontaneous CP violation with nearly vanishing θ

(“Nelson-Barr" or NB) (and related: spontaneous breaking
of P -Barr, Mohapatra, Senjanovic)

3 The axion, or the Peccei-Quinn symmetry

There are others (e.g. Hiller and Schmaltz, Anson Hook) which
can be shoehorned into this classification scheme).
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Among naturalness problems, the strong CP problem is special
in that it is of almost no consequence. We don’t have to invoke
anthropic selection to realize that if the cosmological constant
was a few orders of magnitude larger than observed, the
universe would be dramatically different. The same is true for
the value of the weak scale and of the light quark and lepton
masses. But if θ were, say, 10−3, nuclear physics would hardly
be different than we observe, since effects of θ are shielded by
small quark masses.
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So while theorists may be endlessly clever in providing
solutions to the problem, we might choose to be guided by a
principle that the smallness of θ should be incidental to other
aspects of physical theory, or, at the least, a plausible accident
of features of an underlying theory.

Our goal today is to ask to look at how each of these solutions
might fare under this principle.
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Outline

θ renormalization in the Standard Model
mu = 0.

1 Theoretical justifications
2 Lattice status and a proposed calibration of lattice

measurements of mq
3 Generalizations

The axion: PQ Quality
Spontaneous CP Violation (Nelson-Barr)

1 Two issues: higher dimension operators (bound the
CP-violating scale); loop corrections (matching)

2 Tuning of parameters
3 Role of axions (and reprise for mu = 0)
4 Nelson-Barr in a landscape

Spontaneous P Violation
Conclusions
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What is the Strong CP Problem

Two sources of CP violation in QCD, related by anomaly:

θ

16π2 FF̃ ; arg detmq

θ̄ = θ − arg det mq < 10−10.

As convenient, can use anomaly redefine fields so θ or
arg det mq is zero.

Suppose there is a scale, ΛSM , below which the only degrees of
freedom are those of the SM. Define fields so arg det mq = 0.
Then ask about radiative corrections to this quantity.
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Loop Corrections at Low Energies in the Standard
Model

Loop corrections to θ in the Standard Model are highly
suppressed. Focussing on divergent corrections, one requires
Higgs loops. These involve the Hermitian matrices

A = y†dyd ; B = y†uyu (1)

Contributions to θ are proportional to traces of the form

Tr(ABA2B . . . ) (2)

one additional matrix factor for each loop.
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It is easy to check that the first complex combination involves
six matrices, e.g.

Tr(ABA2B2) (3)

but this and its complex conjugate both appear with the same
coefficient. It is necessary to add a U(1) gauge loop (which
distinguishes u and d) to have the possibility of a complex
traces. [Ellis, Gaillard]
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So if θ is small at ΛSM , further corrections are extremely tiny
(finite corrections are also very small).

Why might this be?
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mu = 0

If mu = 0, one can rotate away θ. More precisely, one requires

mu

md
< 10−10 (4)

at the scale ΛSM . There are two issues with this proposal:
1 Why might mu be so small?
2 We can measure mu (with the help of the lattice). Is this

consistent with lattice results?
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Accounting for small mu

Banks, Nir, Seiberg put forward models which, in accounting for
quark flavor, gave rise to small or zero mu.

A simple possibility is suggested by string theory, which often
exhibits anomalous discrete symmetries; more precisely, the
chiral content of the theory is anomalous, with the anomaly
being cancelled by the non-linear transformation of an
axion-like field. In the supersymmetric case, this means that
one has a modulus field, coupling to the ū quark as

e−ΦQHU ū. (5)

One requires that the exponential be very small, but this is
plausible. One can speculate as to whether or not a suitable
discrete symmetry structure is typical of underlying theories.
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How might mu = 0 be consistent with known facts
of hadron physics

Instantons suggestive (Georgi-McArthur). With three light
quarks, generate an effective u quark mass (two point function)
proportional to mdms. Simple dimensional analysis suggests
the effect goes as

mdms

Λ
(6)

with Λ a suitable QCD scale. This could easily be of order the
few MeV expected from current algebra. Kaplan and Manohar
expressed this as an ambiguity in current algebra, i.e. they
isolated a term and second order in quark masses which could
mimic the effects of a u quark mass.
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Summary of lattice results for light quark masses

Current results from lattice simulations (summarized by the
FLAG working group) are inconsistent with mu = 0.

mu = 2.16 (9)(7)MeV md = 4.68 (14)(7)MeV (7)

ms = 93.5(2.5)MeV

Numbers are in MS scheme at 2 GeV.

So mu is many standard deviations from zero. Probably end of
story, but some proposals for dedicated tests (Kitano),
calibrations (Dine, Draper, Festuccia).
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The Axion

(Pseudo)-scalar field, a, with approximate (Peccei-Quinn)
symmetry a→ a + α and coupling

a
32π2fa

FF̃ (8)

Absorb θ into a. a part of low energy theory; low energy theory
breaks PQ symmetry, favors a = 0.
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The Challenge for the PQ Solution: Axion Quality

Global symmetries should arise only as accidents of gauge
symmetry and the structure of low dimension terms in an
effective action. It has been recognized almost from the
beginning that this is a challenge for the axion solution of the
strong CP problem.

With δV the contribution to V (a) from scales above the QCD
scale, we can define an axion quality factor, Qa, as

Qa =
fa
∂δV (a)
∂a

m2
πf 2
π

(9)

Solving the strong CP problem requires

Qa < 10−10 (10)
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In a conventional effective field theory analysis (i.e. finite
number of degrees of freedom above fa), this is quite a
challenge. If

〈Φ〉 = faeia/fa (11)

symmetry violating operators like

Φn+4

Mn
p

(12)

make too large a contribution to Qa even for fa = 1011 GeV
unless n > 7. We might try to achieve this with a discrete ZN ,
but this requires N = 11 at least, which certainly violates our
minimalist principle.
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Axions in string theory

Witten pointed out early on that string theory provides a
possible resolution to this conundrum.

This is most easily understood in the framework of
supersymmetry. Typically string models possess moduli, Φ,
whose imaginary component obeys a discrete shift symmetry:

Φ = x + ia; a→ a + 2π (13)

This insures, for example, that any superpotential is a function
of e−Φ at large x . Here x might be 8π2

g2 for some gauge coupling
g.
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So the issue becomes: why or whether the theory sits in an
asymptotic region of the moduli space where e−x is very small.
One can put forward various scenarios (and this is consistent at
least with the fact that the observed gauge couplings are
small), but reliable computations are not possible at present.
Correlated with possibility of large field inflation (Laurel
Stephenson-Haskins, M.D.)

String axions point to large fa. Requires a separate talk (tied up
with so-called moduli problem.
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The Nelson-Barr mechanism

Unlike axion, mu = 0 solutions, no obvious low energy
consequences.

Attempts to achieve a setup where θ at the scale ΛSM is
extremely small.
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Invokes spontaneous CP violation to argue “bare θ" is zero.
Constructs a mass matrix such that spontaneous CP breaking
gives a large CKM angle (as observed, δ = 1.2) with
arg det mq = 0.

Bare θ is tree level θ (presumes some perturbative
approximation). Must insure that θ(ΛSM) is small.
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Such a structure is perhaps made plausible by string theory,
where CP is a (gauge) symmetry, necessarily spontaneously
broken. At string scale, θ = 0 a well-defined notion. Some
features of the required mass matrices appear, e.g., in
Calabi-Yau compactifications of the heterotic string.
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Simple realization of the NB structure

Complex scalars ηi with complex (CP-violating) vev’s.
Additional vectorlike quark with charge 1/3.

L = µq̄q + λifηi d̄f q + yfgQf d̄gφ (14)

where φ is Higgs; y , λ, µ real.

M =

(
µ B
0 md

)
(15)

Bf = λifηi is complex. M has real determinant.

The structure is reminiscent of an E6 gauge theory, which has
the requisite vector-like quarks and singlets.
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Requirements for a successful NB Solution

1 Symmetries: It is important that ηi not couple to q̄q, for
example. So, e.g., η’s complex, subject to a ZN symmetry.

2 Coincidences of scale: if only one field η, CKM angle
vanishes (can make d quark mass matrix real by an overall
phase redefinition). Need at least two, and their vev’s
(times suitable couplings) have to be quite close:

δCKM ∝
Bsmall

Blarge
(16)

3 Similarly, µ (which might represent vev of another field) can
not be much larger than ηi , and if much smaller the
Yukawa’s and B’s have to have special features.
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Constraints on the Overall Scale

Before considering radiative effects, possible higher dimension
operators in L constrain the scales ηi , µ. E.g.

η∗i ηj

Mp
q̄q (17)

requires |η|Mp
< 10−10.
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Barr-Nelson With/Without Supersymmetry

Without supersymmetry, highly tuned. Two light scalars and µ
(or three light scalars), with masses 10 orders of magnitude
below Mp. Far worse than θ.

Even ignoring that, require close coincidence of scales.

Supersymmetry helps. Allows light scalars. Coincidences still
required (and more chiral multiplets to achieve desired
symmetry breakings – typically at least seven). Some of the
high dimension operators better controlled (e.g. if µ, ηi much
larger than susy breaking scale, don’t have analogs of the
η∗i ηj q̄q operator).
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Axions in the NB Scenario

What does it mean that the “bare" θ is naturally zero in a model
which is CP-conserving at some underlying level? String theory
provides a realization. Here one might mean that the vev’s of
the moduli are CP conserving, i.e. that the various axions have
vanishing vev. These axions might be presumed to be heavier
than the conventional QCD axion (otherwise they would provide
a PQ resolution of strong CP). Such masses could arise from
strong string effects, or other strong gauge groups.

Michael Dine Solutions of the Strong CP Problem: A Scorecard



So NB might be considered a particular limit of the PQ picture.
Here it is not necessary that the quality be particular good,
provided that arg det mq ≈ 0 and the axion coupling to the fields
which break CP is weak enough.
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How plausible is θbare = 0

Thinking of “θbare" as the expectation value of some axion-like
field, one can ask: how likely is it that this quantity vanishes.
One model: flux landscapes. Here, “KKLT" as a model.
Superpotential

W = e−Φ/b + W0. (18)

Supersymmetric stationary points have

φ ≈ b log(W0). (19)

θbare = 0 requires that W0 is real.

In a landscape, this is likely to be extremely rare. W0 a sum of
many determines determined by fluxes. Roughly speaking
requires that all CP-odd fluxes (presumably 1/2) should vanish.
Exponential suppression.
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Loop Corrections in Nelson-Barr:
Non-Supersymmetric case

In the non-supersymmetric case, in the simplest model,
potential corrections arise at one loop order. Consider, in
particular, couplings of the form

λijηiηj |H|2

give rise to one loop contributions.
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hHi h⌘ai

h⌘bi

Qi
d̄ q

H ⌘

d̄j

Figure 1: Example threshold correction to Arg det md.

at tree level, or will have one loop corrections to ✓̄ similar to non-composite models. This will

lead us to consider NB in the supersymmetric context.

In the BBP model, dangerous contributions to ✓̄ arise at one loop from the Higgs portal

operators

(�ij⌘
†
i ⌘j + �ij⌘i⌘j + cc)H†H . (3.4)

�ij can be forbidden by a ZN symmetry with N > 2, so we consider the e↵ects of �ij . Unless

the �s are very small, these couplings make a large contribution to the Higgs mass. In the

context of a solution to the mCP hierarchy problem, there might or might not be a principled

reason why the couplings are small, but a priori they indicate only another contribution of

many to the tuning of m2
H . At one loop, the diagram of Fig. 1 gives a complex correction to

the SM down-type Yukawa coupling, contributing to a shift in ✓̄ of order

�✓̄ ' Im Tr y�1�y ' ⌘aaafabf�bc⌘
⇤
c

16⇡2m2
CP

. (3.5)

Adequately suppressing ✓̄ requires the a and/or � couplings to be small.

The authors of [20] took the viewpoint that whatever solves the SM hierarchy problem

might suppress the portal couplings. Such suppressions can occur in supersymmetric or

composite theories (both of which solve the m2
CP hierarchy problem, but not necessarily the

full m2
H one). These theories involve significant extra structure beyond the minimal BBP

model, and the radiative corrections to ✓̄ must be considered in the full theories. Without

supersymmetry or extra dynamics, the Higgs mass is simply tuned, and small ✓ is problematic.

At two loop order, there are additional contributions which must be suppressed. In

– 7 –
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If the new couplings are of order one these are six or seven
orders of magnitude too large.

In the past these have sometimes been dismissed on the
grounds that these couplings contribute to the Higgs mass, but
this is just part of the usual fine tuning problem.

Michael Dine Solutions of the Strong CP Problem: A Scorecard



Supersymmetry breaking and Nelson-Barr

Many possible phases once allow soft breaking Note: these
effects don’t decouple for large susy-breaking scale. E.g.
is susy breaking described by Goldstino superfield, X ,
superpotential couplings

Od

Md−2
p

X (20)

where 〈O〉 is complex can lead to large phases in soft
breakings. Similarly phases in W . Phases in gaugino masses
feed directly into θ.
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Loop Corrections in Supersymmetric Nelson-Barr

If tree level phases in soft terms suppressed, loops still pose a
problem (Kagan, Leigh, M.D.). Loop corrections to gaugino
mass from loops with q, q̄, fields. Require, e.g., A terms small
or proportional to Yukawas. Gauge mediation (with real F ) most
plausible solution (A terms small). (Luty, Schmaltz in a slightly
different context)
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A variant: Spontaneous P Violation

P can forbid θ. So perhaps CP phases order one when
allowed, but enforce P.

Long history. Often motivated by unification in O(10). Examples
include model of Barr and Senjanovic; recent work of Hook.

Take Hook’s model as an example.

Gauge group: SU(3)× SU(2)L × SU(2)R × U(1)
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Hook’s Model: Particle content:

Ordinary quarks and leptons

Q = (3,2,1)1/3 ū = (3̄,1,1, )−4/3 d̄ = (3̄,1,1)2/3;

L = (1,2,1)−1 ē = (1,1,1)2.

Mirror quarks and leptons:

Q̄′ = (3̄,1,2)−1/3 u′ = (3,1,1, )4/3 d ′ = (3,1,1)−2/3;

L′ = (1,1,2)1 e′ = (1,1,1)−2.

Parity takes SU(2)L ↔ SU(2)R Q ↔ Q̄′∗, ū ↔ u′∗ etc.
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Problems typically more severe than NB:
1 Higher dimension operators place upper bounds on scales.

Fine tuning severe without supersymmetry.
2 Radiative corrections problematic.
3 With supersymmetry, phases in HUHD and H ′UH ′D

independent, problematic (in addition to problems
encountered in NB case). Gauge mediation does not
automatically fix this difficulty.
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Conclusions

Each proposed solution to the strong CP problem raises
troubling questions. We have argued, indeed, that θ is of so
little importance that any solution should be an outcome of
some other constraint on the physical theory. Solutions which
require many additional degrees of freedom, intricate
symmetries, or significant fine tuning have little plausibility.
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1 A very light u quark might be a consequence of horizontal
symmetries, or might arise as a result of the anomalous discrete
symmetries which seem ubiquitous in string theory. However,
there are now lattice computations which appear to definitively
rule out the possibility.

2 The axion raises the issues of the quality of the PQ symmetry.
String theory suggests a plausible answer, but our
understanding is limited.

3 Nelson-Barr: The basic premise, that if the underlying theory is
CP conserving, the “bare" θ vanishes, is open to question; it
requires an understanding of how certain moduli are stabilized,
and in a landscape would seem unlikely. Allowing this, the
mechanism requires a low scale for CP violation. Without
supersymmetry this is highly tuned. With supersymmetry, still
coincidences. Loop corrections very problematic without
supersymmetry. With supersymmetry, severe difficulties except,
perhaps, with gauge mediation.

Other variants exist (Hiller-Schmaltz, Hook). Similar issues.
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I will leave it to you to make a final scoresheet, and a viewpoint
on which solution of the strong CP problem is the most likely.
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